seif | Date: Tuesday, 11/Jun/2013, 10:44 | Message # 1 |
Lieutenant
Messages: 42
Awards: 0
Reputation: 0
Status: Offline
| IntegrateCosxSinx dx use three different methods. I only know one method .... can anyone help me about other topics?
Yes I can
|
|
| |
Admin | Date: Tuesday, 11/Jun/2013, 10:46 | Message # 2 |
Sergeant
Messages: 30
Awards: 5
Reputation: 1
Status: Offline
| First Method: Int, CosxSinx dx let U = Sinx ------> du/dx = Cosx then dx = du/Cosx Int, Cosx U (du/Cosx) hapo Cosxitaondoka na Cosx iliyopo ndani ya Bracket Int, U du = ½ U2 + C C is constant. Since U = Sin x then: =1/2Sin2x +C Second Method: Int, CosxSinx dx let U = Cosx ------> du/dx = -Sinx then dx = du/-Sinx Int, U Sinx (du/-Sinx) hapo Sinx itaondoka na Sinx iliyopo ndani ya Bracket.) Int, -U du = -½ U2 + C C is constant. Since U = Cos x then: =-1/2 Cos2x +C NOTE: Be careful withNegative Sign Third Method: Remember that sin2x= 2SinxCosx so by dividing by 2 bothsides we obtain1/2Sin2x = SinxCosx Therefore: CosxSinx= 1/2Sin2x then integrate now 1/2Sin2x. this is the third method: Int, 1/2Sin2x let U = 2x ------> du/dx = 2 then dx = du/2 Int, 1/2SinU X du/2 Int, 1/4SinU du = -1/4CosU + C But U = 2x Therefore: =-1/4Cos2x +C
|
|
| |